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ABSTRACT 
In this paper, we proved a common fixed point theorem on complex valued b-metric space under rational 

contraction. The obtained result is an extension of some well known results in literature. 
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I. INTRODUCTION 
 

In 1922, Banach [2]proved contraction principle which has wide application in many branches of mathematics such 

as mathematical analysis, computer sciences and engineering. In 1998, Czerwik [4] introduced the concept of b- 

metric space. In 2011, Azam et al.[1] introduced the notion of complex valued metric spaces and established some 

fixed point results for a pair of mappings for contraction condition satisfying a rational expression. After the 
establishment of complex valued metric spaces, many researchers have contributed with their work in this space. 

Rouzkard and Imdad [10] generalized Azam et al.[1]. Subsequently Sintunavarat et al. ([14],[15]) obtained common 

fixed point results by replacing the constant of contractive condition to control functions. Singh et al.([11],[12],[13]) 

proved fixed point theorems in complex valued metric spaces. In this paper, we proved a common fixed point 

theorem on complex valued b-metric space under rational contraction.  

 

II. PRELIMINARIES 
 

Let C be the set of complex numbers and let z1, z2 ∈ C. Define a partial order ≤  on  C 

as z1 ≤  z2 if and only if Re(z1) ≤ Re(z2), Im(z1)  ≤  Im(z2).  

It follows that z1 ≤ z2 if one of the following conditions is satisfied : 

(1) Re(z1) = Re(z2), Im(z1) < Im(z2) 

(2) Re(z1) < Re(z2), Im(z1) = Im(z2) 

(3) Re(z1) < Re(z2), Im(z1) < Im(z2) 

(4) Re(z1) = Re(z2), Im(z1) = Im(z2) 

 

In particular, we will write z1 ≤ z2 if one of (1), (2) and (3) is satisfied  and we will write z1 < z2 if only (3) is 

satisfied.  

 

Definition .2.1. Let X be a non empty set and let s ≥ 1 be a given real number. A function d : X ×X → C satisfies 

the following conditions  

1. 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y.  

2. d(x, y) = d(y, x). 

3. d(x, z) ≤ s[d(x, y) + d(y, z)].  

The pair (X, d) is called complex valued-b-metric space or dq-b-metric space. 
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Definition.2.2. Let (X, d) be a complex valued b-metric space. 

(1) A point x ∈ X is called interior point of a set A ⊆ X whenever ∃ 0 ≤ r ∈ C such that  

                B(x, r) = {y ∈ X : d(x, y) ≤ r}⊆ A.  

(2) A subset A ⊆ X is called open whenever each element of A is an interior point of A.  

(3) A subset A ⊆ X is called closed whenever each element of A is a point of A.  

 

Definition. 2.3. Let (X, d)be a complex valued b-metric space. Then a sequence {xn}∞
n=1 in X is called a Cauchy’s 

sequence if and only if for all ε > 0 there exist n(ε) ∈ N such that for each  n ,m  ≥  n(ε) we have  

d(xn,  xm) < ε.  

 
Definition.2.4. Let (X, d)be a complex valued b-metric space. Then a sequence {xn}∞ n=1 in X is called convergent 

sequence if and only if there exists x ∈ X such that for all n ∈ N for all n > n(ε) we have  

d(xn ,x) < ε ,then we write lim n→∞ xn = x.  

 

Definition 2.5. The complex valued b-metric space is complete if every Cauchy sequence convergent. 

 

III. MAIN RESULT 
 

Theorem 3.1 

 

Let (X,d) be complete complex valued -b-metric space. Let S,T : X → X be a self mapping such that 

𝐝(𝐒𝐱, 𝐓𝐲)  ≤
𝐤[𝐝(𝐱,𝐒𝐱)𝐝(𝐱,𝐓𝐲) + 𝐝(𝐲,𝐓𝐲)𝐝(𝐲,𝐒𝐱)] 

𝐝(𝐱,𝐓𝐲) + 𝐝(𝐲,𝐒𝐱)
 ……(1) 

 

 

∀x, y ∈ X, where 0 ≤ k < 1 and s ≥ 1. Then S and T have unique common fixed point. 

 

Proof: Let x0 ∈X and  {𝑥𝑛}𝑛=1
∞  be a sequence in X such that   

xn+1=Sxn  and xn+2=Txn+1                                                                     (2) 

 

Consider   

for n= 0, 1,2,3… 

  d(xn+1, xn+2) = d(Sxn, Txn+1)  

d(xn+1, xn+2) ≤
k[d(xn ,Sxn)d(xn,Txn+1)+d(xn+1,Txn+1)d(xn+1,Sxn)]

d(xn,Txn+1)+d(xn+1,Sxn)
  

 

                        ≤
k[d(xn ,xn+1)d(xn,xn+2)+d(xn+1,xn+2)d(xn+1,xn+1)]

d(xn,xn+2)+d(xn+1,xn+1)
  

 

                        ≤
k[d(xn ,xn+1)d(xn,xn+2)]

d(xn,xn+2)
  

                        ≤ kd(xn, xn+1)………………………………..(3) 

Continue this process we get, 

d(xn+1, xn+2) ≤ kd(xn, xn+1), … . ≤ 𝑘𝑛d(xn, xn+1) 

Now we show that {𝑥𝑛} is Cauchy sequence in X. Let m ,n in X and m > n. 

Then we have  

        d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm) 

                         ≤ sd(xn, xn+1) + s[s{d(xn+1, xn+2) + d(xn+2, xm)}] 
                        ≤ sknd(x0, x1) + s2kn+1d(x0, x1) + s3kn+2d(x0, x1) + ⋯ 

                        ≤ sknd(x0, x1)[1 + sk + s2k2 + ⋯ ] 

                        ≤
skn

1−sk
d(x0, x1)……………………………………..(4) 

Then lim
𝑛→∞

 d(xn, xm) = 0, as  limit n, m → ∞ , since k < 1 , lim
𝑛→∞

skn

1−sk
 d(xn, xm) = 0 
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Hence {𝑥𝑛} is Cauchy' sequence in X. Since   X is complete, so it converges to u. 
Now we show that u is fixed point of S. If not then there exist z in C such that  

d(Su, u) = z > 0 from (1) we get , 

             𝑑(𝑢, 𝑆𝑢) = 𝑧 

                             ≤ s[d(u, xn+2) + d(xn+2, Su)] 
                             ≤ s[d(u, xn+2) + d(Su, Txn+1)] 

                             ≤ sd(u, xn+2) + s[
k[d(u,Su)d(u,Txn+1)+d(xn+1,Txn+1)d(xn+1,Su)]

d(u,Txn+1)+d(xn+1,Su)
] 

 

                            ≤ sd(u, xn+2) + s[
k[d(u,Su)d(u,xn+2)+d(xn+1,xn+2)d(xn+1,Su)]

d(u,xn+2)+d(xn+1,Su)
] 

 

Now taking as limit n → ∞ , we get z < 0 , a contradiction .Therefore Su = u . 

This implies that u is a fixed point of S. 

Now we show that u is fixed point of T. If not then there exist z in C such that  

d(u, Tu) = z > 0 from (1) we get, 

             𝑑(𝑢, 𝑇𝑢) = 𝑧 

                             ≤ s[d(u, xn+1) + d(xn+1, Tu)] 
                             ≤ s[d(u, xn+1) + d(Sxn, Tu)] 

                             ≤ sd(u, xn+1) + s[
k[d(xn,Sxn,)d(xn, ,Tu)+d(u,Tu)d(u,Sxn,)]

d(xn,,Tu)+d(u,Sxn,)
] 

 

                            ≤ sd(u, xn+2) + s[
k[d(xn,xn+1,)d(xn, ,Tu)+d(u,Tu)d(u,xn+1,)]

d(xn,,Tu)+d(u,xn+1,)
] 

 

Now taking as limit n → ∞ ,we get z < 0 , a contradiction .Therefore Tu = u . 

This implies that u is a fixed point of T. 

 

Uniqueness  

Now we show that S and T have unique common fixed point. Consider u and v  are two fixed point of S and T. 

Since Su = u, Sv = v, Tu 

 = u and Tv = v. then 

 

   𝑑(𝑢, 𝑣) = 𝑑(𝑆𝑢, 𝑇𝑣) 

                                               ≤
k[d(u,Su)d(u,Tv) + d(v,Tv)d(v,Su)] 

d(u,Tv) + d(v,Su)
 

                                                         ≤
k[d(u,u)d(u,v) + d(v,v)d(v,u)] 

d(u,v) + d(v,u)
 

                                                         ≤ 0. 

Hence u = v .This implies that S and T have unique fixed point. 

 

Corollary 3.2.  
Let (X, d) be complete complex valued -b-metric space. Let T : X → X be a self mapping such that 

d(Tx, Ty)  ≤
k[d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)] 

d(x,Ty) + d(y,Tx)
  

∀x, y ∈ X, where 0 ≤ k < 1 and s ≥ 1. Then T has unique fixed point. 

Proof: Put S = T in the above  theorem 3.1,we get the result. 

 

Corollary 3.3.  

Let (X,d) be complete complex valued -b-metric space. Let T : X → X be a self mapping such that 

d(Tnx, Tmx)  ≤
k[d(x,Tnx)d(x,Tny) + d(y,Tny)d(y,Tnx)] 

d(x,Tny) + d(y,Tnx)
  

 

∀x, y ∈ X, where 0 ≤ k < 1 and s ≥ 1. Then T has unique fixed point. 
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